Play@Bodog88
  • Home
    • Deposit & Withdrawal
  • Sportsbook
    • Promotion
    • Video
    • Live Score
    • How to Play
  • Casino
    • Promotion
    • Video
    • How to Play>
      • Baccarat Statistic
    • Strategy>
      • Baccarat>
        • Baccarat Basic Strategy
        • 1-3-2-6 BACCARAT STRATEGY
        • Baccarat Card Counting Strategy
        • Baccarat Martingale Strategy
  • Poker
    • Promotion
    • Video
    • How to Play
    • Strategy
  • Blog
  • Contact Us

baccarat card counting strategy

In either blackjack or baccarat a good first step in developing a card counting strategy is to determine the effect of removing any given card from the game. The following table shows the number of banker, player, and tie wins resulting from the removing of one card in an 8-deck shoe. The card removed is indicated in the left column.

Card Removed                   Number Banker              WinPlayer Win                      Tie Win

1                                         2259266202814720         2198201626637560         468838163231312
2                                         2259390347439480         2198279181695870         468636463548240
3                                         2259415336955130         2198240411263230          468650244465232
4                                         2259565639560830         2198132965463160         468607387659600
5                                         2259056540713470         2198626760121850         468622691848272
6                                         2259230629854970         2198942636434940         468132726393680
7                                         2259288625471740         2198847351781120         468170015430736
8                                         2258880877214840         2198299582316670         469125533152080
9                                         2259013211112320         2198292198535290         469000583035984
10                                       2259094649086970         2198163195365880         469048148230736

The next table puts these number is some perspective by indicating the probability of a banker, player, and tie win according to the card removed.

Card Removed                                                                 Probability
                                          Banker Win           Player Win                Tie Win

1                                         0.458613                 0.446217                 0.095170
2                                         0.458638                 0.446233                 0.095129
3                                         0.458643                 0.446225                 0.095132
4                                         0.458673                 0.446203                 0.095123
5                                         0.458570                 0.446303                 0.095127
6                                         0.458605                 0.446367                 0.095027
7                                         0.458617                 0.446348                 0.095035
8                                         0.458534                 0.446237                 0.095229
9                                         0.458561                 0.446235                 0.095203
10                                       0.458578                 0.446209                 0.095213

The next table shows the effect on the house edge of each bet according to the card removed. A negative number indicates removal is bad for the player, positive indicates removal is good.

Card Removed                                                                 House Edge               
                                              Banker                    Player                            Tie

0                                         0.000019                 -0.000018                  0.000513
1                                         0.000044                 -0.000045                 -0.000129
2                                         0.000052                 -0.000054                 -0.000239
3                                         0.000065                 -0.000067                 -0.000214
4                                         0.000116                 -0.000120                 -0.000292
5                                        -0.000083                  0.000084                 -0.000264
6                                        -0.000113                  0.000113                 -0.001160
7                                        -0.000083                  0.000082                 -0.001091
8                                        -0.000050                  0.000053                  0.000654
9                                        -0.000023                  0.000025                  0.000426

The next table multiplies the above numbers by ten million.

Card Removed                                            Count Adjustment
                                         Banker            Player                 Tie

0                                         188                  -178                   5129
1                                         440                  -448                   1293
2                                         522                  -543                  -2392
3                                         649                  -672                  -2141
4                                         1157                -1195                -2924
5                                        -827                   841                  -2644
6                                        -1132                 1128                -11595
7                                        -827                   817                  -10914
8                                        -502                   533                    6543
9                                        -231                   249                    4260
Average                              0                       0                        0

To adapt this information to a card counting strategy the player should start with three running counts of zero. As each card is seen as it leaves the shoe the player should add the point values of that card to each running count. For example if the first card to be played is an 8 then the three running counts would be: banker=-502, player=533, tie=6543. Of course the player does not have to keep a running track of all three counts. In fact the point values for the banker and player are nearly oposite of each other. A high running count for the banker would mean a corresponding low count for the player, and vise versa.
In order for any given bet to become advantageous the player should divide the running count by the ratio of cards left in the deck to get the true count. A bet hits zero house edge at the following true counts:
  • Banker: 105791
  • Player: 123508
  • Tie: 1435963
Assuming you were able to actually play this strategy perfectly you would notice that the true counts seldom passed the point of zero house edge. The next table shows the ratio of hands played, based on a sample of 100 million, in which the true count passes the break even points above. The left column indicates the ratio of cards dealt before the cards are shuffled.

Penetration                                                                             Positive Expectation
                                                              Banker                      Player                       Tie

90 percent                                          0.000131                  0.000024                 0.000002
95 percent                                          0.001062                  0.000381                 0.000092
98 percent                                          0.005876                  0.003700                 0.002106


The final table indicates the expected revenue per 100 bets and a $1000 wager every time a positive expected value occured. Please remember that this table assumes the player is able to keep a perfect count and the casino is not going to mind the player only making a bet once every 475 hands of less.

Penetration                                                                        Expected Profit
                                                           Banker               Player                  Tie

90 percent                                          $0.01                  $0.00                  $0.00
95 percent                                          $0.20                  $0.06                  $0.15
98 percent                                          $2.94                  $1.77                  $11.93

I hope this section shows that for all practical purposes baccarat is not a countable game. For more information on a similar experiment I would recomment The Theory of Blackjack by Peter A. Griffin. Although the book is mainly devoted to blackjack he has part of a chapter titled 'Can Baccarat Be Beaten?' on pages 216 to 223. Griffin concludes by saying that even in Atlantic City, with a more liberal shuffle point than Las Vegas, the player betting $1000 in positive expectation hands can expect to profit 70 cents an hour.

Try it now
Powered by Create your own unique website with customizable templates.